Effects of Green Tea Extract (Camellia sinensis L.) on Blood Biochemical Parameters in Paracetamol-Induced Wistar Rats

Main Article Content

Damar Galih
Indriyani Indriyani
Sinta Dwi Septiningtyas
Wulan Christijanti
R. Susanti
Aditya Marianti

Abstract

Background: Paracetamol is one of the analgesics and antipyretics that are widely traded freely, so it is possible that the use is not according to the recommended dose and consumption time. This can trigger liver damage and changes in blood biochemistry. Green tea has components such as antioxidants, anti-inflammatories, and hepatoprotectors. The study aimed to analyze the effect of green tea extract on the blood biochemistry of rats induced by paracetamol.

Methods: Laboratory experimental research with the Post-Test Control Group Design method, using 25 male Wistar rats, applying random sampling. Twenty-five rats were divided into 5 groups: K- (control), K+ (positive control), and treatment groups with green tea extract, respectively 175 mg (T1), 350 mg (T2), and 700 mg/kg bw (T3) for 24 days. The treatment group and K+ received paracetamol 600 mg/kg bw on the 14th day for 10 days, and green tea extract was still given. Data, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglycerides (TG), total cholesterol, and leukocyte counts, were analysed using ANOVA and the Least Significant Difference (LSD) test.

Results: GTE significantly (p-value <0.05) reduced leukocytes and AST, but inadequate paracetamol induction failed to elevate ALT and lipids, masking GTE’s measurable impact on those specific biochemical parameters.

Conclusion: Providing green tea extract was effective in declining the number of leucocytes and AST levels. The study concluded that green tea extract has the potential to influence the biochemical profile of rats induced by paracetamol. Further research is needed regarding the dose and period of administration and exposure.

Article Details

How to Cite
Effects of Green Tea Extract (Camellia sinensis L.) on Blood Biochemical Parameters in Paracetamol-Induced Wistar Rats. (2026). Jurnal Kebidanan Dan Kesehatan Tradisional, 11(1), 64-74. https://doi.org/10.37341/jkkt.v11i1.650
Section
Articles

How to Cite

Effects of Green Tea Extract (Camellia sinensis L.) on Blood Biochemical Parameters in Paracetamol-Induced Wistar Rats. (2026). Jurnal Kebidanan Dan Kesehatan Tradisional, 11(1), 64-74. https://doi.org/10.37341/jkkt.v11i1.650

References

’aisy, A. R., Ratnaningrum, K., & Nugraheni, D. M. (2021). Hepatoprotective effects of papaya leaves extract (Carica Papaya L.) with increased dose: A Study of total bilirubin levels of wistar rats that given paracetamol. Ahmad Dahlan Medical Journal, 2(2), 46–57. https://doi.org/10.12928/admj.v2i2.5063

Ayoub, S. S. (2021). Paracetamol (acetaminophen): A familiar drug with an unexplained mechanism of action. Temperature, 8(4), 351–371. https://doi.org/10.1080/23328940.2021.1886392

Ayusso, L. L., Girol, A. P., Neto, L. A., Gomes, I., & Burdmann, E. A. (2026). Protective effect of green tea (Camellia Sinensis) against kidney diseases. December, S196. https://doi.org/10.65034/bjnabstract-cpn25196

Begriche, K., Penhoat, C., Bernabeu-Gentey, P., Massart, J., & Fromenty, B. (2023). Acetaminophen-induced hepatotoxicity in obesity and nonalcoholic fatty liver disease: A critical review. Livers, 3(1), 33–53. https://doi.org/10.3390/livers 3010003

Cardoso, R. R., Neto, R. O., dos Santos D’Almeida, C. T., do Nascimento, T. P., Pressete, C. G., Azevedo, L., Martino, H. S. D., Cameron, L. C., Ferreira, M. S. L., & Barros, F. A. R. de. (2020). Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Research International, 128, 108782. https://doi.org/10.1016/j.foodres.2019.108782

Dear, J. W. (2023). Fomepizole should not be used more liberally in paracetamol overdose. British Journal of Clinical Pharmacology, 89(2), 599–601. https://doi.org/10.1111/bcp.15596

Derosa, Y., Zubir, N., & Arnelis, R. (2021). The differences of t-regulator cells, alanine aminotransferase serum and aspartate aminotranspherase between hepatitis b chronic patients with and without liver fibrosis. The Indonesian Journal of Gastroenterology, Hepatology, and Digestive Endoscopy, 22(2), 116–123. https://doi.org/10.24871/2222021116-123

Dias, C., & Nylandsted, J. (2021). Plasma membrane integrity in health and disease : signi fi cance and therapeutic potential. Cell Discovery. https://doi.org/10.1038/s41421-020-00233-2

Garcia, C., Andersen, C. J., & Blesso, C. N. (2023). The role of lipids in the regulation of immune responses. Nutrients, 15(18). https://doi.org/10.3390/nu15183899

Guo, H., Chen, S., Xie, M., Zhou, C., & Zheng, M. (2021). The complex roles of neutrophils in APAP-induced liver injury. Cell Proliferation, 54(6), 1–7. https://doi.org/10.1111/cpr.13040

He, L., Xie, H., Du, Y., Xie, X., & Zhang, Y. (2023). The relationship between C-reactive protein to lymphocyte ratio and the prevalence of myocardial infarction in US adults: A cross-sectional study. Heliyon, 9(7). https://doi.org/10.1016/j.heliyon.2023.e17776

Islam, M. T., Quispe, C., Islam, M. A., Ali, E. S., Saha, S., Asha, U. H., Mondal, M., Razis, A. F. A., Sunusi, U., Kamal, R. M., Kumar, M., & Sharifi-Rad, J. (2021). Effects of nerol on paracetamol-induced liver damage in Wistar albino rats. Biomedicine and Pharmacotherapy, 140, 111732. https://doi.org/10.1016/j.biopha.2021.111732

Latif, A. A. El, Assar, D. H., Elkaw, E. M., Hamza, H. A., Alkhalifah, D. H. M., Hozzein, W. N., & Hamouda, R. A. (2021). Protective role of Chlorella vulgaris with thiamine against paracetamol induced toxic effects on haematological, biochemical, oxidative stress parameters and histopathological changes in wistar rats. Scientific Reports, 11(1), 1–16. https://doi.org/10.1038/s41598-021-83316-8

Li, S., Liu, X., Chen, X., & Bi, L. (2020). Research progress on anti-inflammatory effects and mechanisms of alkaloids from chinese medical herbs. Evidence-Based Complementary and Alternative Medicine, 1–10. https://doi.org/10.1155/2020/1303524

Li, X., Ni, J., & Chen, L. (2023). Advances in the study of acetaminophen-induced liver injury. Frontiers in Pharmacology, 14, 1–13. https://doi.org/10.3389/fphar.2023. 1239395

Liu, K., Wang, F. S., & Xu, R. (2021). Neutrophils in liver diseases: Pathogenesis and therapeutic targets. Cellular and Molecular Immunology, 18(1), 38–44. https://doi.org/10.1038/s41423-020-00560-0

Lv, L., Xu, C., Mo, X., Sun, H. Y., & Bi, H. (2020). Green tea polyphenols protect against acetaminophen-induced liver injury by regulating the drug metabolizing enzymes and transporters. Evidence-Based Complementary and Alternative Medicine, 2020. https://doi.org/10.1155/2020/2696432

Masenga, S. K., Kabwe, L. S., Chakulya, M., & Kirabo, A. (2023). Mechanisms of oxidative stress in metabolic syndrome. International Journal of Molecular Sciences, 24(9). https://doi.org/10.3390/ijms24097898

Mitchell, R. A., Rathi, S., Dahiya, M., Zhu, J., Hussaini, T., & Yoshida, E. M. (2020). Public awareness of acetaminophen and risks of drug induced liver injury: Results of a large outpatient clinic survey. PLoS ONE, 15(3), 1–9. https://doi.org/10.1371/journal.pone.0229070

Ndrepepa, G. (2021). Aspartate aminotransferase and cardiovascular disease - A narrative review. Journal of Laboratory and Precision Medicine, 6(January). https://doi.org/10.21037/jlpm-20-93

Ohashi, N., & Kohno, T. (2020). Analgesic Effect of Acetaminophen: A Review of Known and Novel Mechanisms of Action. Frontiers in Pharmacology, 11(November), 1–6. https://doi.org/10.3389/fphar.2020.580289

Quesenberry, K. E., Orcutt, C. J., Mans, C., & Carpenter, J. W. (Eds.). (2021). Ferrets, rabbits, and rodents: Clinical medicine and surgery (4th ed.). Elsevier.

Riyani, A., Firman Solihat, M., & Rohdiana, D. (2021). Hepatoprotector activity test of green tea (Camellia Sinensis, L) gambung variety ethanol extract in Balb/C mouse induced with Ccl4. International …, December, 14–16. http://conference.juriskes.com/index.php/IC/article/view/116

Roehlen, N., Crouchet, E., & Baumen, T. E. (2020). Liver fibrosis : Mechanistic Concepts and. In Cells (Issue 9).

Rotundo, L., & Pyrsopoulos, N. (2020). Liver injury induced by paracetamol and challenges associated with intentional and unintentional use. World Journal of Hepatology, 12(4), 125–136. https://doi.org/10.4254/wjh.v12.i4.125

Saeed, M., Khan, M. S., Kamboh, A. A., Alagawany, M., Khafaga, A. F., Noreldin, A. E., Qumar, M., Safdar, M., Hussain, M., Abd El-Hack, M. E., & Chao, S. (2020). L-theanine: An astounding sui generis amino acid in poultry nutrition. Poultry Science, 99(11), 5625–5636. https://doi.org/10.1016/j.psj.2020.07.016

Sarel, Z., & Simanjuntak, K. (2020). Pengaruh pemberian ekstrak teh hijau (Camellia sinensis L.) terhadap penurunan kadar kolesterol total tikus wistar (rattus norvegicus) diabetes induksi aloksan. Jurnal Sehat Mandiri, 15(1), 98–111. https://doi.org/10.33761/jsm.v15i1.195

Sestili, P., & Fimognari, C. (2020). Paracetamol-induced glutathione consumption: Is there a link with severe COVID-19 illness? Frontiers in Pharmacology, 11(October), 1–7. https://doi.org/10.3389/fphar.2020.579944

Shahdkar, M., Orang Goorabzarmakhi, M., Shafizadeh, M., Joukar, F., Maroufizadeh, S., Faraji, N., Zeinali, T., & Mansour-Ghanaei, F. (2025). Association between dyslipidemia and elevated liver enzymes: A cross-sectional study from the PERSIAN Guilan cohort study. Endocrine and Metabolic Science, 19(July), 100272. https://doi.org/10.1016/j.endmts.2025.100272

Shen, X. L., Guo, Y. N., Lu, M. H., Ding, K. N., Liang, S. S., Mou, R. W., Yuan, S., He, Y. M., & Tang, L. P. (2023). Acetaminophen-induced hepatotoxicity predominantly via inhibiting Nrf2 antioxidative pathway and activating TLR4-NF-κB-MAPK inflammatory response in mice. Ecotoxicology and Environmental Safety, 252, 114590. https://doi.org/10.1016/j.ecoenv.2023.114590

Shivam, K. S., Gourav, D. K., Kumar, M., Prajapati, K., Nag, G., Verma, A., Kumar, M., Minz, S., Yadav, J. K., Kumari, T., Singh, K., Kumari, P., Gupta, P. K., & Kumari, K. (2025). paracetamol-induced toxicity : A review of the side effects associated with excessive consumption and mishandling.

International Journal of Scientific Research and Technology, 2(7), 427–436.

Singh, R., & Shukla, R. (2020). Anti hyperlipidemic activity of Saccharum officinarum Linn fresh juice in paracetamol induced hyperlipidemic rats. International Journal of Biology, Pharmacy and Allied Sciences (IJBPAS), 9(10), 2557–2566. https://doi.org/10.31032/IJBPAS/2020/9.10.5201

Tindage, D. P., Dewi, R., Manalu, J. L., Kedokteran, F., & Kesehatan, I. (2021). Green tea and black tea can lower the levels of ldl cholesterol in hyperlipidemic animal model. Damianus Journal of Medicine, 20(1), 40–45.

Wang, Q., Yu, J., Lin, W., Ahammed, G. J., Wang, W., Ma, R., Shi, M., Ge, S., Mohamed, A. S., Wang, L., Li, Q., & Li, X. (2025). L-theanine metabolism in tea plants: Biological functions and stress tolerance mechanisms. Plants, 14(3). https://doi.org/10.3390/plants14030492

Xu, L., & Wang, H. (2023). A dual role of inflammation in acetaminophen-induced liver injury. Liver Research, 7(1), 9–15. https://doi.org/10.1016/j.livres.2023.03.001

Xu, X. Y., Zheng, J., Meng, J. M., Gan, R. Y., Mao, Q. Q., Shang, A., Li, B. Y., Wei, X. L., & Li, H. Bin. (2019). Effects of food processing on in vivo antioxidant and hepatoprotective properties of green tea extracts. Antioxidants, 8(12). https://doi.org/10.3390/antiox8120572

Zheng, X. Q., Zhang, X. H., Gao, H. Q., Huang, L. Y., Ye, J. J., Ye, J. H., Lu, J. L., Ma, S. C., & Liang, Y. R. (2024). Green tea catechins and skin health. Antioxidants, 13(12). https://doi.org/10.3390/antiox13121506